翻訳と辞書
Words near each other
・ Flame-breasted
・ Flame-breasted flowerpecker
・ Flame-breasted fruit dove
・ Flame-breasted sunbird
・ Flame-colored tanager
・ Flame-crested manakin
・ Flame-crested tanager
・ FLAMA
・ Flaman Speed Indicator and Recorder
・ Flamand
・ Flamand River
・ Flamands
・ Flamank
・ Flamant
・ Flamant (company)
Flamant solution
・ Flamant-class patrol vessel
・ Flamanville
・ Flamanville Nuclear Power Plant
・ Flamanville, Manche
・ Flamanville, Seine-Maritime
・ Flamarens
・ Flambard's Confession
・ Flambards
・ Flambards (TV series)
・ Flambards Divided
・ Flambards in Summer
・ Flambeau
・ Flambeau (character)
・ Flambeau 400


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Flamant solution : ウィキペディア英語版
Flamant solution

The Flamant solution provides expressions for the stresses and displacements in a linear elastic wedge loaded by point forces at its sharp end. This solution was developed by A. Flamant 〔A. Flamant. (1892). ''Sur la répartition des pressions dans un solide rectangulaire chargé transversalement.'' Compte. Rendu. Acad. Sci. Paris, vol. 114, p. 1465.〕 in 1892 by modifying the three-dimensional solution of Boussinesq.
The stresses predicted by the Flamant solution are (in polar coordinates)
:
\begin
\sigma_ & = \frac + \frac \\
\sigma_ & = 0 \\
\sigma_ & = 0
\end

where C_1, C_3 are constants that are determined from the boundary conditions and the geometry of the wedge (i.e., the angles \alpha,\beta) and satisfy
:
\begin
F_1 & + 2\int_^
(C_1\cos\theta + C_3\sin\theta)\,\cos\theta\, d\theta = 0 \\
F_2 & + 2\int_^
(C_1\cos\theta + C_3\sin\theta)\,\sin\theta\, d\theta = 0
\end
where F_1,F_2 are the applied forces.

The wedge problem is ''self-similar'' and has no inherent length scale. Also, all quantities can be expressed in the separated-variable form \sigma = f(r)g(\theta). The stresses vary as (1/r).
== Forces acting on a half-plane ==

For the special case where \alpha = -\pi, \beta = 0, the wedge is converted into a half-plane with a normal force and a tangential force. In that case
:
C_1 = - \frac,\quad C_3 = -\frac

Therefore the stresses are
:
\begin
\sigma_ & = -\frac (F_1\cos\theta + F_2\sin\theta) \\
\sigma_ & = 0 \\
\sigma_ & = 0
\end

and the displacements are (using Michell's solution)
:
\begin
u_r & = -\cfrac\left()
\end

The \ln r dependence of the displacements implies that the displacement grows the further one moves from the point of application of the force (and is unbounded at infinity). This feature of the Flamant solution is confusing and appears unphysical. For a discussion of the issue see (
http://imechanica.org/node/319 ).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Flamant solution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.